LYAPUNOV EXPONENTS FOR Mob(D)-COCYCLES: A PROOF OF OSELEDETS THEOREM IN DIMENSION 2

نویسنده

  • JAIRO BOCHI
چکیده

Let T : M → M be an invertible measurable transformation, and μ be a T -invariant probability on M . Let π : E → M be a finite-dimensional real vector bundle over M , endowed with a measurable Riemannian metric ‖ · ‖. Let F : E → E be a measurable vector bundle automorphism over T : this means that π ◦ F = T ◦ π and the action Fx : Ex → ET (x) of F on each fiber Ex = π−1(x) is a linear isomorphism. We also call F a cocycle over T .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Semi-invertible Oseledets Theorem with Applications to Transfer Operator Cocycles

Oseledets’ celebrated Multiplicative Ergodic Theorem (MET) [V.I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), 179–210.] is concerned with the exponential growth rates of vectors under the action of a linear cocycle on Rd. When the linear actions are invertible, the MET guarantees an almost-everywhere poi...

متن کامل

Smooth Ergodic Theory and Nonuniformly Hyperbolic Dynamics

Introduction 1 1. Lyapunov exponents of dynamical systems 3 2. Examples of systems with nonzero exponents 6 3. Lyapunov exponents associated with sequences of matrices 18 4. Cocycles and Lyapunov exponents 24 5. Regularity and Multiplicative Ergodic Theorem 31 6. Cocycles over smooth dynamical systems 46 7. Methods for estimating exponents 54 8. Local manifold theory 62 9. Global manifold theor...

متن کامل

On the Spectrum of Infinite Dimensional Random Products of Compact Operators

We consider an infinite dimensional separable Hilbert space and its family of compact integrable cocycles over a dynamical system f . Assuming that f acts in a compact Hausdorff space X and preserves a Borel regular ergodic measure which is positive on non-empty open sets, we conclude that there is a residual subset of cocycles within which, for almost every x, either the OseledetsRuelle’s deco...

متن کامل

Stochastic Stability of Lyapunov Exponents and Oseledets Splittings for Semi-invertible Matrix Cocycles

We establish (i) stability of Lyapunov exponents and (ii) convergence in probability of Oseledets spaces for semi-invertible matrix cocycles, subjected to small random perturbations. The first part extends results of Ledrappier and Young [18] to the semiinvertible setting. The second part relies on the study of evolution of subspaces in the Grassmannian, where the analysis developed, based on h...

متن کامل

On the stability of Oseledets spaces under random perturbationsis

In this paper we investigate stability properties of matrix cocycles (products of random matrices). It is shown that for a very general type of perturbations stability of Oseledets spaces is equivalent to stability of Lyapunov exponents.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006